Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            is an experimental search for dark matter axions. It uses a solenoidal dc magnetic field to convert an axion dark-matter signal to an ac electromagnetic response in a coaxial copper pickup. The current induced by this axion signal is measured by dc SQUIDs. is designed to be sensitive to Kim-Shifman-Vainshtein-Zakharov (KSVZ) and Dine-Fischler-Srednicki-Zhitnisky (DFSZ) QCD axion models in the 10–200 MHz ( ) range, and to axions with over 5–30 MHz as an extended goal. In this work, we present the electromagnetic modeling of the response of the experiment to an axion signal over the full frequency range of , which extends from the low-frequency, lumped-element limit to a regime where the axion Compton wavelength is only a factor of 2 larger than the detector size. With these results, we determine the live time and sensitivity of the experiment. The primary science goal of sensitivity to DFSZ axions across 30–200 MHz can be achieved with a live scan time of 2.9 years.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            Abstract Cryogenic calorimetric experiments to search for neutrinoless double-beta decay ($$0\nu \beta \beta $$ ) are highly competitive, scalable and versatile in isotope. The largest planned detector array, CUPID, is comprised of about 1500 individual Li$$_{2}$$ $$^{100}$$ MoO$$_4$$ detector modules with a further scale up envisioned for a follow up experiment (CUPID-1T). In this article, we present a novel detector concept targeting this second stage with a low impedance TES based readout for the Li$$_2$$ MoO$$_4$$ absorber that is easily mass-produced and lends itself to a multiplexed readout. We present the detector design and results from a first prototype detector operated at the NEXUS shallow underground facility at Fermilab. The detector is a 2-cm-side cube with 21 g mass that is strongly thermally coupled to its readout chip to allow rise-times of$$\sim $$ 0.5 ms. This design is more than one order of magnitude faster than present NTD based detectors and is hence expected to effectively mitigate backgrounds generated through the pile-up of two independent two neutrino decay events coinciding close in time. Together with a baseline resolution of 1.95 keV (FWHM) these performance parameters extrapolate to a background index from pile-up as low as$$5\cdot 10^{-6}$$ counts/keV/kg/yr in CUPID size crystals. The detector was calibrated up to the MeV region showing sufficient dynamic range for$$0\nu \beta \beta $$ searches. In combination with a SuperCDMS HVeV detector this setup also allowed us to perform a precision measurement of the scintillation time constants of Li$$_2$$ MoO$$_4$$ , which showed a primary component with a fast O(20 $$\upmu $$ s) time scale.more » « less
- 
            Abstract The electron antineutrino flux limits are presented for the brightest gamma-ray burst (GRB) of all time, GRB221009A, over a range of 1.8–200 MeV using the Kamioka Liquid Scintillator Antineutrino Detector. Using multiple time windows ranging from minutes to days surrounding the event to search for electron antineutrinos coincident with the GRB, we set an upper limit on the flux under the assumption of several power-law neutrino source spectra, with power-law indices ranging from 1.5 to 3 in steps of 0.5. No excess was observed in any time windows ranging from seconds to days around the event trigger timeT0. For a power-law index of 2 and a time window ofT0 ± 500 s, a flux upper limit of 2.34 × 109cm−2was calculated. The limits are compared to the results presented by IceCube.more » « lessFree, publicly-accessible full text available March 7, 2026
- 
            Abstract CUPID, the CUORE Upgrade with Particle Identification, is a next-generation experiment to search for neutrinoless double beta decay ($$0\mathrm {\nu \beta \beta }$$ ) and other rare events using enriched Li$$_{2}$$ $$^{100}$$ MoO$$_{4}$$ scintillating bolometers. It will be hosted by the CUORE cryostat located at the Laboratori Nazionali del Gran Sasso in Italy. The main physics goal of CUPID is to search for$$0\mathrm {\nu \beta \beta }$$ of$$^{100}$$ Mo with a discovery sensitivity covering the full neutrino mass regime in the inverted ordering scenario, as well as the portion of the normal ordering regime with lightest neutrino mass larger than 10 meV. With a conservative background index of 10$$^{-4}$$ cts$$/($$ keV$$\cdot $$ kg$$\cdot $$ yr$$)$$ , 240 kg isotope mass, 5 keV FWHM energy resolution at 3 MeV and 10 live-years of data taking, CUPID will have a 90% C.L. half-life exclusion sensitivity of$$1.8\cdot 10^{27}$$ yr, corresponding to an effective Majorana neutrino mass ($$m_{\beta \beta }$$ ) sensitivity of 9–15 meV, and a$$3\sigma $$ discovery sensitivity of$$1\cdot 10^{27}$$ yr, corresponding to an$$m_{\beta \beta }$$ range of 12–21 meV.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in . Unprecedented in size among cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic throughgoing particles. Using the first tonne year of CUORE’s exposure, we perform a search for hypothesized (FCPs), which are well-motivated by various standard model extensions and would have suppressed interactions with matter. Across the searched range of charges no excess of FCP candidate tracks is observed over background, setting leading limits on the underground FCP flux with charges at 90% confidence level. Using the low background environment and segmented geometry of CUORE, we establish the sensitivity of tonne-scale subkelvin detectors to diverse signatures of new physics. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available December 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
